Advanced Industrial and Engineering Polymer Research
Open Access, CiteScore Tracker 2021=11.4
ISSN: 2542-5048
FEATURED CONTENTS
Collection By Topics
OPEN ACCESS – REVIEW ARTICLE
Volume 3, Issue 2 Pages 60-70
April 2020
The development and challenges of poly (lactic acid) and poly (glycolic acid)
K. Jim Jem, Bowen Tan

Bio-plastics have gained tremendous attention, due to the increasing environmental pressure on global warming and plastic pollution. Among them, poly (lactic acid) (PLA) is both bio-based and bio-degradable, which has been widely used in many disposable packaging applications. The global market for PLA demand doubles every 3-4 years, as estimated by Jem's law.

Compared to traditional petroleum-based plastics, PLA is more expensive and usually has less mechanical and physical properties. The recent compounding efforts and the commercialization of D(−) lactic acid and its polymer PDLA have the potential to improve the mechanical and thermal characteristics of PLA (e.g. by forming stereocomplex PLA) for applications in high-end markets. However, the usage of PLA in some other applications is still limited.

With a structure similar to PLA, poly (glycolic acid) (PGA) has promising characteristics such as good biodegradability and barrier properties, which is potentially a beneficial supplement to PLA. The modification of PLA with PGA can be achieved via co-polymerization, physical blending and multilayer lamination. PGA and its combination with PLA have been widely studied in bio-medical applications, but not been well developed at large scales due to its relatively high production cost. In this case, the development of novel production technology and the advent of government regulations are the key drivers for the global transition towards bioplastics. Recently, multiple governmental regulations have been released that restrict the use of traditional plastics and facilitate bio-degradable plastic applications. PGA can be derived from industrial waste gases using an innovative production technology, which reduces carbon emissions and its production cost. By developing the production and compounding technology, PGA can be combined with PLA to play an essential role for a sustainable and environmental friendly plastic industry, especially for single-used products requiring fast degradation at room temperature or in the nature environment.

https://doi.org/10.1016/j.aiepr.2020.01.002
OPEN ACCESS – SHORT COMMUNICATION
Volume 3, Issue 2 Pages 77-82
April 2020
Synthesis and characterization of novel water-soluble 6-deoxy-6-(2-amino-2-(hydroxymethyl)propane-1,3-diol)cellulose derivatives
Annett Pfeifer, Martin Gericke, Thomas Heinze

Amino celluloses are semisynthetic polysaccharide derivatives that are functionalized with amino groups. This class of bio-based polymers has a number of interesting properties for advanced applications such as potential antimicrobial activity and pronounced surface affinity towards various materials. Herein, the synthesis of a novel type of 6-deoxy-6-amino cellulose derivatives with a polar and highly branched substituent (2-amino-2-(hydroxymethyl)propane-1,3-diol/TRIS) is described for the first time. Fundamental principles for the synthesis by nucleophilic displacement of tosylated intermediates are highlighted, thus, providing access to materials with well-defined molecular structures. TRIS-functionalized cellulose derivatives with degrees of substitution (DS) of up to 0.5 were obtained. The solubility and rheological properties of the products showed a strong dependence on the pH value. Due to the unique structural features of the substituent, TRIS amino cellulose derivatives possess a high application potential.


https://doi.org/10.1016/j.aiepr.2020.02.001